
Open SAE J1939

Foreword
SAE J1939 is a protocol for shaping the CAN-bus message in a specific way that suits industrial
vehicles such as tractors, machinery, trucks and more.

SAE J1939 is a very easy protocol to use, but there is a lack of information about SAE J1939, due
to the cost of the protocol document, available how to shape a CAN-bus message according to SAE
J1939 protocol standard. So therefore I’m writing a SAE J1939 protocol available for free to use on
any embedded systems such as STM32, Arduino, AVR, PIC etc.

To learn to build on this project, you need first to understand SAE J1939. I have written this project
in C language because C is an industry standard. The C language dialect I have chosen is ANSI C
(C89) and I don’t use dynamical memory allocation in this library. So it will work with MISRA C
standard.

With this library, you can communicate with valves, engines, actuators, hardware and all other
things that are suitable for heavy industrial mobile applications. I have build up a basic structure of
the project and I hope that other users will send pull request of their C code for extra functionality
to SAE J1939 standard because SAE J1939 is a huge standard.

- Daniel Mårtensson, Sweden, 2021-07-14

Table of Contents
Foreword...1
Quick introduction to SAE J1939 ID and DATA...2
Functionality overview of Open SAE J1939..3

Open SAE J1939..4
Listen For Messages..4

SAE J1939:71 Application Layer..4
Request Software ID...4
Request Component ID...4
Request ECU ID..4
Request Proprietary A...4

ISO 11783-7 Application Layer...4
SAE J1939:73 Diagnostics Layer..5
SAE J1939:81 Network Layer...5
SAE J1939:21 Transport Layer..5

SAE J1939 Protocol...5
Request...5
Acknowledgement...6
Transport Protocol Connection Management..7
Transport Protocol Data Transfer...9
Address Claimed..9
Address not claimed...11
Commanded Address...12
Delete Address...12

DM1...13
DM2...15
DM3...16
DM11 – Not supported..16
 Proprietary A...16
Software identification...16
ECU identification...17
Component identification..18
DM14 & DM15 and DM16...19

ISO 11783 Protocol..21
ISO 11783-7 Application Layer...21

Auxiliary Valve Command..21
General Purpose Valve Command..22
Auxiliary Valve Estimated Flow...23
General Purpose Valve Estimated Flow..24
Auxiliary Valve Measured Position..25

Revision..26

Quick introduction to SAE J1939 ID and DATA
First you need to understand the data frame of SAE J1939. The data frame of SAE J1939 is
basically one ID and one DATA. ID and DATA is the information we are going to send through the
CAN-bus network.

ID contains 4 hex values and DATA contains maximum 8 hex values e.g 8 bytes values.
An ID can be shaped as this 0x18FE8022 where 80 is the destination address, called DA and 22 is
the source address, called SA. So you more likely going to see ID numbers as this 0x18FE’DA’’SA’

The DA address and SA address is the addresses of the ECU – Electronic Control Unit, e.g
microcontroller/PCB board. You self decide what address your ECU should have. For example. If
you have two ECU that are going to communicate to each other. Then you have for example ECU1
address as 0xA1 and ECU2 as 0xA5. If ECU1 what to send a message to ECU2, then the
destination address DA would be 0xA5 and the source address SA would be 0xA1. If ECU2 want to
send a message to ECU1, then DA would be 0xA1 and source address SA would be 0xA5.

So keep that in mind that when I’m talking about SA and DA, it’s only about source address and
destination address of the ECU. When it comes to the rest of the ID values 0x18FE, they are just
there to describe the type of message. Each message have a unique ID and therefore the ID will be
shaped differently. Sometimes, DA in the ID message is replaced by a unique hex value.

The length of DA and SA are from 0x0 to 0xFD because 0xFE is error address and 0xFF is
broadcast address.

Figure 1: SAE J1939 Data frame

DATA is just 8 bytes of data. DATA holds information about anything the user want to send to other
ECU. Sometimes DATA can be 3 bytes depending on if we are sending a unique message.

Functionality overview of Open SAE J1939
Open SAE J1939 is just basic C-code, arrays, function, structures and bitwise operations. Nothing
more. I have shaped this project according to this map below. This map describe basic overview of
the project. Some functions may have been added after this document was made, but the structure is
the same. Those functions are inside the green box and they are called extra functionality of the
project.

We begin from the top. The J1939 Typedef Struct. That structure is just a basic C code typedef
struct that holds information about all ECU who are connected to the CAN-network. The struct can
be found at the Open SAE J1939 folder.
The idea behind the struct:

• The struct holds source address of all ECU
• The user are going to create a C pointer of the struct and pass it to the SAE J1939 functions,

like an object where the user pass that object as argument in the functions. So you can
interpret that object as likely basic OOP in C.

• The struct hold temporary information about other ECU

Figure 2: Structure of this project

• The struct hold information about their own ECU
• The struct holds the source address from where the message came from

Open SAE J1939

Listen For Messages

This function is called all the time by the user. Most likely inside a while loop. This function
reading ID and DATA directly and split ID into 4 different ID for determine what kind of ID it is
and what to do next. It split up ID, check what ID it is and then check what function it want to call
and then pass that DATA + source address SA + pointer of the struct to that function as argument.
That’s it. Listen For Messages is just a function who select which function we want to call,
depending on how the ID looks like.

SAE J1939:71 Application Layer

Request Software ID

Every ECU has a software ID for example a number or a text that describe for example BIOS
software or software version. Call this function if you want to request the software ID from other
ECU. The ECU will then response back to you with information.

Request Component ID

Every ECU has a component it control. It can be for example a motor, valve or other thing. Call this
function if you want the ECU to send information about the component that ECU controls.

Request ECU ID

Same as above. Call this function if you want to know the ID information about the ECU you are
sending to.

Request Proprietary A

Proprietary A is a holder for manufacturer specific data. When this, you can add your specific data
if you want to broadcast or send to a unique ECU address.

ISO 11783-7 Application Layer
 Here I have selected the application layer of agriculture, tractors and machinery ISO standard. That
application layer contains these functions:

• General Purpose Valve command – Sending control messages to ECU for controlling valves

• Auxiliary Valve Command – Sending control messages to ECU for controlling valves

• General Purpose Valve Estimated Flow – Get the computed flow from a valve

• Auxiliary Valve Estimated Flow – Get the computed flow from a valve

• Auxiliary Valve Estimated Position – Get the computed position of the valve main spool

SAE J1939:73 Diagnostics Layer
Diagnostics layer contains messages about errors, but it also can contains functionality such as
memory access of the EEPROM (built in “hard drive”) or command for deleting error messages.

• DM1 – Contains error messages such as electrical fault, location etc

• DM2 – Contains previous active DM1 messages

• DM3 – Deleting DM2 messages

• DM14 – Memory request of bytes, address etc from a ECU

• DM15 – Memory response from a DM14 request from that ECU

• DM16 – Binary data transfer (if DM15 repose was OK)

SAE J1939:81 Network Layer
At the startup of an ECU, the ECU sending Address Claimed, which means it giving out the
information about something called NAME. NAME is basic information about the ECU + SA.

• Address Claimed – Send out NAME + ID that holds SA.
• Address Not Claimed – Send out NAME + ID that holds Address Not Claimed.
• Commanded Address – Send this to an ECU and you can change its NAME and SA.
• Delete Address – Send a command to other ECU or all ECU for deleting a specific address.

This is not SAE J1939 standard.

SAE J1939:21 Transport Layer
• Acknowledgement – Send a OK, BUSY, WAIT etc. as a response on a request.
• Request – Asking information or functionality about an ECU.
• Transport Protocol Connection Management – Send how much data in packages you want to

send to the receiver.
• Transport Protocol Data Transfer – Send the data in packages to the receiver.

SAE J1939 Protocol

Request
Request are used when we want to ask an ECU of “something”. That “something” is a PGN
number. Enter a PGN number, send the message and get a response from that ECU directly. All
PGN numbers can be found in Enum_PGN.h

Message ID 18 EA "DA" "SA"

PGN 0x00EA00 (59904)

Peer to Peer/Broadcast Peer to Peer or Broadcast with DA = 0xFF (Used for Address
Claimed)

Message length 3 bytes

Multipacket No

Byte 1 PGN LSB

Byte 2 PGN

Byte 3 PGN MSB

Field Max value Min value Explanation Enum

PGN 0x0 0xFFFFFF Request command Enum_PGN.h

In case you did not understand what LSB and MSB is. LSB stands for least signifiant bit and MSB
stands for most signifiant bit. LSB means the lowest number and MSB means the highest number. If
we want to send the PGN number 0x18EEA1, then the LSB is 0xA1 because that’s the lowest
number and MSB is 0x18 because that’s the highest number. The same reason when you write out
1024 where you begin with highest number 1(1000), then 0(000), then 2(20) and last 4. 1000 + 000
+ 20 + 4 = 1024. So keep that in mind that MSB is the highest number and LSB is the lowest
number.

Acknowledgement
Acknowledgement are used when we want to response back to an ECU e.g completed, busy, not
available etc.

Message ID 18 E8 "DA" "SA"

PGN 0x00E800 (59392)

Peer to Peer/Broadcast Peer to Peer

Message length 8 bytes

Multipacket No

Byte 1 Control byte

Byte 2 Group function value

Byte 3 0xFF (Reserved)

Byte 4 0xFF (Reserved)

Byte 5 Address

Byte 6 PGN of requested info LSB

Byte 7 PGN of requested info

Byte 8 PGN of requested info MSB

Field Max value Min value Explanation Enum

Control
byte

0x0 0xFF Describes the status of
the requested PGN

Enum_Control_Byte.h

Group 0x0 0xFF The function code that Enum_Group_Function_Value.h

function
value

specify the cause of the
control byte

Address 0x0 0xFF The source address of
the ECU from where
the acknowledgement
came from

PGN of
requested
info

0x0 0xFFFFFF The same PGN number
in the request

Enum_PGN.h

Transport Protocol Connection Management
This describe for the receiver ECU how many packages and total size of data we are going to send
via Transport Protocol Data Transfer.

Message ID 1C EC "DA" "SA"

PGN 0x00EC00 (60416)

Peer to Peer/Broadcast Peer to Peer

Message length 8 bytes

Multipacket No

Byte 1 Control byte

Byte 2 Total message size LSB

Byte 3 Total message size MSB

Byte 4 Number of packages

Byte 5 0xFF (Reserved)

Byte 6 PGN of the packeted message LSB

Byte 7 PGN of the packeted message

Byte 8 PGN of the packeted message MSB

Field Max value Min value Explanation Enum

Control
byte

0x0 0xFF Describes how the data
transfer should become

Enum_Control_Byte.h

Total
message
size

0x9 0x6F9 Total bytes we are
going to transfer

Number of 0x2 0xE0 How many packages

packages are we going to
transfer

PGN of the
packeted
message

0x0 0xFFFFFF The type of
information we are
sending

Enum_PGN.h

Here is two way to send a multi pack messages:

• BAM(Broadcast Announce Message) – Just send the message to the ECU. This is used
when you broadcast multiple packages with the ECU destination address 0xFF.

• RTS(Ready To Send)/CTS(Clear To Send) – Wait for a response (With an acknowledgement
response at the end). This is used when you send to a specific ECU destination address
with a multiple package message.

Figure 3: Broadcast Announce Message(BAM)

Figure 4: Request To Send(RTS), Clear To
Send(CTS) and EndOfMsgACK

Transport Protocol Data Transfer
This sending packages to the receiver ECU. Transport Protocol Connection Management must be
sent first. Else the receiver won’t know how many packages and total data and PGN number we the
transmitter is sending.

Message ID 1C EB "DA" "SA"

PGN 0x00EB00 (60160)

Peer to Peer/Broadcast Peer to Peer

Message length 8 bytes

Multipacket No

Byte 1 Sequence number

Byte 2 Data 1

Byte 3 Data 2

Byte 4 Data 3

Byte 5 Data 4

Byte 6 Data 5

Byte 7 Data 6

Byte 8 Data 7

Field Max value Min value Explanation Enum

Sequence
number

0x0 0xE0 This is the order/index
of the data transfer
packages

Data 1 to
Data 7

0x0 0xFF Your data bytes

Address Claimed
This describes the NAME about the ECU, and also the other ECU get to know its SA.

Message ID 18 EE FF "SA"

PGN 0x00EE00 (60928)

Peer to Peer/Broadcast Broadcast

Message length 8 bytes

Multipacket No

Repetition rate Sent at power on, after a “Request” for “Address Claim” and after a
“Commanded Address”

Byte 1 Identity number LSB

Byte 2 Identity number

Byte 3 Manufacturer code LSB [8..6], Identity number MSB [5..1]

Byte 4 Manufacturer code MSB

Byte 5 Function instance [8..4], ECU Instance [3..1]

Byte 6 Function

Byte 7 Vehicle system [8..2], 0x1 (Reserved) [1]

Byte 8 Arbitrary address capable [8], Industry group [7..5], Vehicle system
instance [4..1]

Notice that [X..Y] describes the bit index in the byte. It more likely looks like this.

Field Max value Min value Explanation Enum

Identity
number

0x0 0x1FFFFF ECU identity number

Manufactur
er code

0x0 0x7FF ECU manufacturer
code

Function
instance

0x0 0x1F ECU function area

ECU 0x0 0x7 ECU function area

Figure 5: How to interpret

instance

Function 0x0 0xFF ECU functionality Enum_NAME.h

Vehicle
system

0x0 0x7F Where in the vehicle
system the ECU is
located

Arbitrary
address
capable

0x0 0x1 If the ECU have right
to change address if the
address conflicts with
another ECU

Enum_NAME.h

Industry
group

0x0 0x7 Where in the industry
the ECU is located

Enum_NAME.h

Vehicle
system
instance

0x0 0xF The vehicle system
code

Address not claimed
When an ECU cannot claim their address, the other ECU will receive this message. The user don’t
know which ECU cannot claim their address. The user can only see the amount of how many ECU
could not claim their address and the NAME of the ECU who could not claim its address. To find
which name, just look at the ECU address 0xFE. See the uint8_t variable
number_of_cannot_claim_address inside the struct J1939.

Message ID 18 EE FF FE

PGN 0x00EE00 (60928)

Peer to Peer/Broadcast Broadcast

Message length 8 bytes

Multipacket No

Repetition rate Sent if ECU address conflicts with other addresses

Byte 1 Identity number LSB

Byte 2 Identity number

Byte 3 Manufacturer code LSB [8..6], Identity number MSB [5..1]

Byte 4 Manufacturer code MSB

Byte 5 Function instance [8..4], ECU Instance [3..1]

Byte 6 Function

Byte 7 Vehicle system [8..2], 0x1 (Reserved) [1]

Byte 8 Arbitrary address capable [8], Industry group [7..5], Vehicle system
instance [4..1]

Commanded Address
This command is used when the user want to change the NAME + SA at an ECU. Notice that this
PGN don’t have an ID because Commanded Address DATA is 9 bytes and therefore using transport
protocol data transfer.

PGN 0x00FED8 (65240)

Peer to Peer/Broadcast Peer to Peer

Message length 8 bytes

Multipacket Yes. Use Transport Protocol Connection Management → Transport
Protocol Data Transfer

Byte 1 Identity number LSB

Byte 2 Identity number

Byte 3 Manufacturer code LSB [8..6], Identity number MSB [5..1]

Byte 4 Manufacturer code MSB

Byte 5 Function instance [8..4], ECU Instance [3..1]

Byte 6 Function

Byte 7 Vehicle system [8..2], 0x1 (Reserved) [1]

Byte 8 Arbitrary address capable [8], Industry group [7..5], Vehicle system
instance [4..1]

Byte 9 New ECU address

Field Max value Min value Explanation Enum

New ECU
address

0x0 0xFD New address of the
ECU

Delete Address
This is not a SAE J1939 standard. It’s made up by me. The reason is that I cannot find an ECU that
deletes an address. Because Open SAE J1939 library remembers all the ECU addresses of other
ECU addresses. Just to have the ability to count how many are connected and how many are not
connected. Good to know. I have looked up the PGN at ISOBUS and I haven’t found any PGN with
the number 2. So I guess it’s free for me to use then.

Message ID 00 02 "DA" "SA"

PGN 0x000002 (2)

Peer to Peer/Broadcast Peer to Peer or Broadcast with DA = 0xFF (Used if the user want all
ECU to delete a specific address for example after Commanded Address)

Message length 8 bytes

Multipacket No

Byte 1 Old ECU address

Byte 2 0xFF (Reserved)

Byte 3 0xFF (Reserved)

Byte 4 0xFF (Reserved)

Byte 5 0xFF (Reserved)

Byte 6 0xFF (Reserved)

Byte 7 0xFF (Reserved)

Byte 8 0xFF (Reserved)

Field Max value Min value Explanation Enum

Old ECU
address

0x0 0xFD This ECU address is
going to disapear from
ECU_address[255]
array in J1939 struct

DM1
Diagnostics of error and location of an ECU. Notice that this message ID don’t have a destination
address because it’s a broadcast message to all ECU.

Message ID 18 FE CA "SA"

PGN 0x00FECA (65226)

Peer to Peer/Broadcast Broadcast

Message length 8 bytes

Multipacket No: Normal transfer
Yes: Use Transport Protocol Connection Management → Transport
Protocol Data Transfer

Repetition rate • On request from other ECU
• When an error becomes active

Byte 1 SAE Lamp status malfunction indicator [8..7],
SAE Lamp status red stop [6..5],
SAE Lamp status amber warning [4..3],
SAE lamp status protect lamp [2..1]

Byte 2 SAE Flash lamp malfunction indicator [8..7],
SAE Flash lamp red stop [6..5],
SAE Flash lamp amber warning [4..3],
SAE Flash lamp protect lamp [2..1]

Byte 3 SPN LSB

Byte 4 SPN

Byte 5 SPN MSB [8..6], FMI [5..1]

Byte 6 SPN conversion method [8], Occurrence count[7..1]

Byte 7 0xFF (Reserved)

Byte 8 0xFF (Reserved)

Field Max value Min value Explanation Enum

SAE Lamp
status
malfunction
indicator

0x0 0x1 SAE lamp indicates
fault

SAE Lamp
status red
stop

0x0 0x1 SAE lamp becomes red

SAE Lamp
status
amber
warning

0x0 0x1 SAE lamp warns with
amber light

SAE lamp
status
protect
lamp

0x0 0x1 SAE lamp lights up the
protection light

SAE Flash
lamp
malfunction
indicator

0x0 0x1 SAE flash lamp
indicates fault

SAE Flash
Lamp red
stop

0x0 0x1 SAE flash lamp
becomes red

SAE Flash
Lamp
amber
warning

0x0 0x1 SAE flash lamp warns
with amber light

SAE Flash
lamp
protect
lamp

0x0 0x1 SAE flash lamp lights
up the protection light

SPN 0x0 0x7FFFFF Suspect Parameter
Number – Location of
the fault

Enum_DM1_DM2.h

FMI 0x0 0x1F Failure Mode Identifier
– What cause the fault

Enum_DM1_DM2.h

SPN
Conversion
method

0x0 0x1 1 = Diagnostics
Trouble Code are
aligned using a newer

conversion method. 0
= One of the three
Diagnostics Trouble
Code conversion
methods is used and
ECU manufacture shall
know which of the
three methods is used

Occurence
count

0x0 0x7E Count how often the
DM1 error message
becomes active

DM2
DM2 is the previous active DM1 messages. Them shares the same SPN and FMI codes.

Message ID 18 FE CB "SA"

PGN 0x00FECB (65227)

Peer to Peer/Broadcast Broadcast

Message length 8 bytes

Multipacket No: Normal transfer
Yes: Use Transport Protocol Connection Management → Transport
Protocol Data Transfer

Repetition rate • On request from other ECU
• On request for DM3

Byte 1 SAE Lamp status malfunction indicator [8..7],
SAE Lamp status red stop [6..5],
SAE Lamp status amber warning [4..3],
SAE lamp status protect lamp [2..1]

Byte 2 SAE Flash lamp malfunction indicator [8..7],
SAE Flash lamp red stop [6..5],
SAE Flash lamp amber warning [4..3],
SAE Flash lamp protect lamp [2..1]

Byte 3 SPN LSB

Byte 4 SPN

Byte 5 SPN MSB [8..6], FMI [5..1]

Byte 6 SPN conversion method [8], Occurrence count[7..1]

Byte 7 0xFF (Reserved)

Byte 8 0xFF (Reserved)

DM3
DM3 is a request to clear DM2 messages. Use the request function above. After this is done, DM2
will be sent to all ECU via broadcast.

PGN 0x00FECC (65228)

DM11 – Not supported
DM11 is a request for clearing DM1 messages. The reason why I don’t have implement it, is
because in my opinion, it’s just an administrative burden that other ECU need to clear the DM1
error codes. I want the ECU it self to clear their own DM1 codes. The same way it activate the error
codes by it self.

Proprietary A
Send out the Proprietary A of the ECU. Use this if you have data that are going to be synced or send
out in a fixed repeated time interval.

Message ID 14 EF 23 "SA"

PGN 0x00EF00 (61184)

Peer to Peer/Broadcast Broadcast

Message length 8 bytes

Multipacket No: Normal transfer
Yes: Use Transport Protocol Connection Management → Transport
Protocol Data Transfer

Repetition rate On request from other ECU

Byte 1-N Manufacturer specific data

Field Max value Min value Explanation Enum

Manufacturer specific data 1 to N 0x0 0xFF Each data is one byte

Software identification
Send out the software ID of the ECU. Notice that DA here in the message ID is not destination
address. It’s the hex value 0xDA.

Message ID 18 FE DA "SA"

PGN 0x00FEDA (65242)

Peer to Peer/Broadcast Broadcast

Message length 8 bytes

Multipacket No: Normal transfer
Yes: Use Transport Protocol Connection Management → Transport
Protocol Data Transfer

Repetition rate On request from other ECU

Byte 1 Number of fields

Byte 2-N Identification

Field Max value Min value Explanation Enum

Number of
fields

0x0 0x1E How many fields we
are going to transfer

Identificatio
n 1 to N

0x0 0xFF Each identification is
one byte e.g ASCII

ECU identification
Send out ECU identification to the ECU.

Message ID 18 FD C5 "SA"

PGN 0x00FDC5 (64965)

Peer to Peer/Broadcast Broadcast

Message length 8 bytes

Multipacket No: Normal transfer
Yes: Use Transport Protocol Connection Management → Transport
Protocol Data Transfer

Repetition rate On request from other ECU

Byte 1 ECU part number

Byte 2 ECU serial number

Byte 3 ECU location

Byte 4 ECU type

Byte 5 0xFF (Reserved)

Byte 6 0xFF (Reserved)

Byte 7 0xFF (Reserved)

Byte 8 0xFF (Reserved)

Notice that there are a field called length_of_each_field in ECU_identification inside the J1939
struct. If length_of_each_field = 1, then this message is going to be transfer in a normal way, else
multipacket.

Field Max value Min value Explanation Enum

ECU part
number

0x0 0xFF The part number in
ASCII format

ECU serial
number

0x0 0xFF The serial number in
ASCII format

ECU
location

0x0 0xFF The location in ASCII
format

ECU type 0x0 0xFF The type in ASCII
format

Component identification
Send out component identification to the ECU.

Message ID 18 FE EB "SA"

PGN 0x00FEEB (65259)

Peer to Peer/Broadcast Broadcast

Message length 8 bytes

Multipacket No: Normal transfer
Yes: Use Transport Protocol Connection Management → Transport
Protocol Data Transfer

Repetition rate On request from other ECU

Byte 1 Component product date

Byte 2 Component model name

Byte 3 Component serial number

Byte 4 Component unit name

Byte 5 0xFF (Reserved)

Byte 6 0xFF (Reserved)

Byte 7 0xFF (Reserved)

Byte 8 0xFF (Reserved)

Notice that there are a field called length_of_each_field in Component_identification inside the
J1939 struct. If length_of_each_field = 1, then this message is going to be transfer in a normal way,
else multipacket.

Field Max value Min value Explanation Enum

Component
product date

0x0 0xFF The product date in
ASCII format

Component
model name

0x0 0xFF The model name in
ASCII format

Component
serial
number

0x0 0xFF The serial number in
ASCII format

Component
unit name

0x0 0xFF The unit name in
ASCII format

DM14 & DM15 and DM16
DM14 is a memory request. DM15 is a memory response for the DM14 memory request and if
DM15 response was proceeded, then DM16 data transfer is called next.

DM14 memory request:

Message ID 18 D9 "DA" "SA"

PGN 0x00D900 (55552)

Peer to Peer/Broadcast Peer to Peer

Message length 8 bytes

Multipacket No

Byte 1 Number of requested bytes LSB

Byte 2 Number of requested bytes MSB [8..6], Pointer type [7], Command
[6..3], 0x1 (Reserved) [1]

Byte 3 Pointer LSB

Byte 4 Pointer

Byte 5 Pointer MSB

Byte 6 Pointer extension

Byte 7 Key LSB

Byte 8 Key MSB

Figure 5: DM14, DM15 and DM16

Field Max value Min value Explanation Enum

Number of
requested
bytes

0x0 0x7FF The question of how
many bytes the ECU
want to have

Pointer type 0x0 0x1 0 if Pointer and Pointer
extension are together
one addresses. 1 if
pointer is an address
and Pointer extension
is a way to describe a
function code

Enum_DM14_DM15.h

Command 0x0 0x7 The command what to
do

Enum_DM14_DM15.h

Pointer 0x0 0xFFFFFF The memory address

Pointer
extension

0x0 0xFF Extra memory address,
or it can be a function
code

Enum_DM14_DM15.h

Key 0x0 0xFFFF Password or no
password at all

Enum_DM14_DM15.h

DM15 memory response of the DM14 memory request:

Message ID 18 D8 "DA" "SA"

PGN 0x00D800 (55296)

Peer to Peer/Broadcast Peer to Peer

Message length 8 bytes

Multipacket No

Repetition rate On request from other ECU

Byte 1 Number of allowed bytes LSB

Byte 2 Number of allowed bytes MSB [8..6], 0x1 (Reserved) [7], Status [6..3],
0x1 (Reserved) [1]

Byte 3 EDC parameter LSB

Byte 4 EDC parameter

Byte 5 EDC parameter MSB

Byte 6 EDCP extension

Byte 7 Seed LSB

Byte 8 Seed MSB

Field Max value Min value Explanation Enum

Number of
allowed
bytes

0x0 0x7FF The question of how
many bytes the ECU is
going to have

Status 0x0 0x7 The response status of
the request

Enum_DM14_DM15.h

EDC
parameter

0x0 0xFFFFFF This is an explanation
of the status response

Enum_DM14_DM15.h

EDCP
extension

0x0 0xFF This is an explanation
of the EDC parameter

Enum_DM14_DM15.h

Seed 0x0 0xFFFF Status of the key
request

Enum_DM14_DM15.h

DM16 is binary data transfer:

Message ID 18 D7 "DA" "SA"

PGN 0x00D700 (55040)

Peer to Peer/Broadcast Peer to Peer

Message length 8 bytes

Multipacket No: Normal transfer
Yes: Use Transport Protocol Connection Management → Transport
Protocol Data Transfer

Byte 1 Number of occurrences

Byte 2-256 Raw binary data 1-255

Field Max value Min value Explanation Enum

Number of
occurrences

0x0 0xFF How many raw binary
data we have

Raw binary
data 1-255

0x0 0xFF Data to transfer

ISO 11783 Protocol

ISO 11783-7 Application Layer
This ISO standard is for agriculture, tractors and machinery.

Auxiliary Valve Command

Auxiliary valve command is a command from an ECU to broadcast to all other ECU. All it does it
to tell other ECU which valve they are going to use and how they are going to use it. Maximum 16
valve numbers can be used, from 0 to 15 according to ISO 11783-7 standard.

Message ID 0C FE (30+valve number) "SA"

PGN 0x00FE(30+valve number) (65072+valve number)

Peer to Peer/Broadcast Broadcast

Message length 8 bytes

Multipacket No

Byte 1 Standard flow

Byte 2 0xFF (Reserved)

Byte 3 Fail safe mode [8..7], 0x3 (Reserved) [6..5], Valve state [4..1]

Byte 4 0xFF (Reserved)

Byte 5 0xFF (Reserved)

Byte 6 0xFF (Reserved)

Byte 7 0xFF (Reserved)

Byte 8 0xFF (Reserved)

Field Max value Min value Explanation Enum

Standard
flow

0x0 0xFF In practice, this is the
position of the valve
main spool

Fail safe
mode

0x0 0x1 1 = Spool go to neutral
0 = No fail safe mode

ISO_11783_Enum_Auxiliary_An
d_General_Purpose_Valves.h

Valve state 0x0 0xF What way the valve
should act

ISO_11783_Enum_Auxiliary_An
d_General_Purpose_Valves.h

General Purpose Valve Command

The difference between Auxiliary Valve Command and General Purpose Valve Command is that
Auxiliary Valve Command can hold 16 valves meanwhile General Purpose Valve Command can
hold 1 valve.

Message ID 0C C4 "DA" "SA"

PGN 0x00C400 (50176)

Peer to Peer/Broadcast Peer to Peer

Message length 8 bytes

Multipacket No

Byte 1 Standard flow

Byte 2 0xFF (Reserved)

Byte 3 Fail safe mode [8..7], 0x3 (Reserved) [6..5], Valve state [4..1]

Byte 4 Extended flow LSB

Byte 5 Extended flow MSB

Byte 6 0xFF (Reserved)

Byte 7 0xFF (Reserved)

Byte 8 0xFF (Reserved)

Field Max value Min value Explanation Enum

Standard
flow

0x0 0xFF In practice, this is the
position of the valve
main spool

Fail safe
mode

0x0 0x1 1 = Spool go to neutral
0 = No fail safe mode

ISO_11783_Enum_Auxiliary_An
d_General_Purpose_Valves.h

Valve state 0x0 0xF What way the valve
should act

ISO_11783_Enum_Auxiliary_An
d_General_Purpose_Valves.h

Extended
flow

0x0 0xFFFF In practice, this is the
position of the valve
main spool in higher
precision

Auxiliary Valve Estimated Flow

Broadcast estimated flow from an auxiliary valve. Total 16 valves can be used, from 0 to 15.

Message ID 0C FE (10+valve number) "SA"

PGN 0x00FE(10+valve number) (65040+valve number)

Peer to Peer/Broadcast Broadcast

Message length 8 bytes

Multipacket No

Repetition rate On request from other ECU

Byte 1 Extend estimated flow standard

Byte 2 Retract estimated flow standard

Byte 3 Fail safe mode [8..7], 0x3 (Reserved) [6..5], Valve state [4..1]

Byte 4 Limit [8..6], 0x1F (Reserved)

Byte 5 0xFF (Reserved)

Byte 6 0xFF (Reserved)

Byte 7 0xFF (Reserved)

Byte 8 0xFF (Reserved)

Field Max value Min value Explanation Enum

Extend
estimated
flow
standard

0x0 0xFF In practice, this is the
flow of the valve main
spool

Retract
estimated
flow
standard

0x0 0xFF In practice, this is the
negative flow of the
valve main spool

Fail safe
mode

0x0 0x1 1 = Spool go to neutral
0 = No fail safe mode

ISO_11783_Enum_Auxiliary_An
d_General_Purpose_Valves.h

Valve state 0x0 0xF What way the valve
should act

ISO_11783_Enum_Auxiliary_An
d_General_Purpose_Valves.h

Limit 0x0 0x7 Limit code of the valve ISO_11783_Enum_Auxiliary_An
d_General_Purpose_Valves.h

General Purpose Valve Estimated Flow

Broadcast estimated flow from a general purpose valve.

Message ID 0C C6 "DA" "SA"

PGN 0x00C600 (50688)

Peer to Peer/Broadcast Peer to Peer

Message length 8 bytes

Multipacket No

Repetition rate On request from other ECU

Byte 1 Extend estimated flow standard

Byte 2 Retract estimated flow standard

Byte 3 Fail safe mode [8..7], 0x3 (Reserved) [6..5], Valve state [4..1]

Byte 4 Limit [8..6], 0x1F (Reserved)

Byte 5 Extend estimated flow extended LSB

Byte 6 Extend estimated flow extended MSB

Byte 7 Retract estimated flow extended LSB

Byte 8 Retract estimated flow extended MSB

Field Max value Min value Explanation Enum

Extend
estimated
flow
standard

0x0 0xFF In practice, this is the
flow of the valve main
spool

Retract
estimated

0x0 0xFF In practice, this is the
negative flow of the

flow
standard

valve main spool

Fail safe
mode

0x0 0x1 1 = Spool go to neutral
0 = No fail safe mode

ISO_11783_Enum_Auxiliary_An
d_General_Purpose_Valves.h

Valve state 0x0 0xF What way the valve
should act

ISO_11783_Enum_Auxiliary_An
d_General_Purpose_Valves.h

Limit 0x0 0x7 Limit code of the valve ISO_11783_Enum_Auxiliary_An
d_General_Purpose_Valves.h

Extend
estimated
flow
extended

0x0 0xFFFF In practice, this is the
high precision flow of
the valve main spool

Retract
estimated
flow
extended

0x0 0xFFFF In practice, this is the
negative high precision
flow of the valve main
spool

Auxiliary Valve Measured Position
Broadcast measured position from an auxiliary valve. Total 16 valves can be used, from 0 to 15.

Message ID 0C FF (20+valve number) "SA"

PGN 0x00FF(20+valve number) (65312+valve number)

Peer to Peer/Broadcast Broadcast

Message length 8 bytes

Multipacket No

Repetition rate On request from other ECU

Byte 1 Measured position percent LSB

Byte 2 Measured position percent MSB

Byte 3 0xF (Reserved) [8..5], Valve state[4..1]

Byte 4 Measured position micrometer LSB

Byte 5 Measured position micrometer MSB

Byte 6 0xFF (Reserved)

Byte 7 0xFF (Reserved)

Byte 8 0xFF (Reserved)

Field Max value Min value Explanation Enum

Measured
position
percent

0x0 0xFFFF In practice, this is the
position in percent of
main spool

Valve state 0x0 0xF What way the valve
should act

ISO_11783_Enum_Auxiliary_An
d_General_Purpose_Valves.h

Measured
position
micrometer

0x0 0xFFFF In practice, this is the
position in micrometer
of main spool

ISO_11783_Enum_Auxiliary_An
d_General_Purpose_Valves.h

Revision
• 2023-12-25: Add Proprietary A functionality

	Foreword
	Quick introduction to SAE J1939 ID and DATA
	Functionality overview of Open SAE J1939
	Open SAE J1939
	Listen For Messages

	SAE J1939:71 Application Layer
	Request Software ID
	Request Component ID
	Request ECU ID
	Request Proprietary A

	ISO 11783-7 Application Layer
	SAE J1939:73 Diagnostics Layer
	SAE J1939:81 Network Layer
	SAE J1939:21 Transport Layer

	SAE J1939 Protocol
	Request
	Acknowledgement
	Transport Protocol Connection Management
	Transport Protocol Data Transfer
	Address Claimed
	Address not claimed
	Commanded Address
	Delete Address
	DM1
	DM2
	DM3
	DM11 – Not supported
	Proprietary A
	Software identification
	ECU identification
	Component identification
	DM14 & DM15 and DM16

	ISO 11783 Protocol
	ISO 11783-7 Application Layer
	Auxiliary Valve Command
	General Purpose Valve Command
	Auxiliary Valve Estimated Flow
	General Purpose Valve Estimated Flow
	Auxiliary Valve Measured Position

	Revision

